Matematika

Pertanyaan

Buktikan bahwa [tex]\bold{ \int\limits {u.cos^2(u).sin(u)} \, du}= [/tex][tex] \dfrac{1}{36}(9sin(u)+sin(3u)-9u.cos(u)-3u.cos(3u)) +C[/tex]

1 Jawaban

  • Saya gak pakai latex, ya

    cos²(u) = 1 - sin²(u)

    ∫u.cos²(u).sin(u) du = ∫u.(1 - sin²(u)).sin(u) du
    = ∫u(sin(u) - sin³(u)) du
    = ∫u.sin(u) du - ∫u.sin³(u) du

    bagi jadi dua pengerjaan.

    yang pertama,
    ∫u.sin(u) du

    pakai integral parsial.
    misal, u = u
    du = du

    dv = sin(u) du
    v = -cos(u)

    uv - ∫vdu = u.(-cos(u)) - ∫(-cos(u)) du
    = -u.cos(u) + ∫cos(u) du
    = -u.cos(u) + sin(u)

    untuk integral kedua

    ∫u.sin³(u) du

    misal,
    u = u
    du = du
    dv = sin³u du
    v = (1/12)(cos(3u) - 9cos(u)) (sin³u nya tinggal diubah pakai identitas trigonometri, terus hasilnya diubah bentuknya jadi kayak gini).

    uv - ∫vdu = u(1/12)(cos(3u) - 9cos(u)) - ∫(1/12)(cos(3u) - 9cos(u)) du
    = (u/12)(cos(3u) - 9cos(u)) - (1/36)sin(3u) + (9/12)sin(u)
    = (u/12)cos(3u) - (9u/12)cos(u) - (1/36)sin(3u) + (9/12)sin(u)

    jadi,

    ∫u.sin(u) du - ∫u.sin³(u) du
    =
    -u.cos(u) + sin(u) - ((u/12)cos(3u) - (9u/12)cos(u) - (1/36)sin(3u) + (9/12)sin(u)) + C
    = (-u + 9u/12)cos(u) + (1 - 9/12)sin(u) - (u/12)cos(3u) + (1/36)sin(3u) + C
    = (-3u/12)cos(u) + (3/12)sin(u) - (u/12)cos(3u) + (1/36)sin(3u) + C
    = (-9u/36)cos(u) + (9/36)sin(u) - (3u/12)cos(3u) + (1/36)sin(3u) + C
    = (1/36)(9sin(u) + sin(3u) - 9u.cos(u) - 3u.cos(3u)) + C

Pertanyaan Lainnya